Adaboost Face Detection Based on Improved Covariance Feature
نویسندگان
چکیده
Excessive number of Haar-like features and the complex threshold calculation of covariance matrix feature are two key issues of Adaboost face detection. In this paper, an efficient feature named covariance feature is proposed. The novel method divides the face image into several regions and it calculate covariance feature of any two regions. Then optimal weak classifiers will be picked out by Adaboost algorithm and they will be composed to a strong classifier. The experiments result in MIT+CMU data sets shows that the feature extraction times of the novel method is slightly slower than covariance matrix feature. However, the feature threshold is obtained much faster than covariance matrix feature, leading the significant reduction of the training time of Adaboost algorithm. Comparing with the Haar-like feature, the detection rate and speed improved obviously.
منابع مشابه
Face Detection Study based on Skin Color and Improved Adaboost Algorithm
For color images in a complex background, we cannot be able to detect faces quickly. So we put forward an algorithm, which is based on skin color feature and the improved AdaBoost algorithm. First, through the skin color detection to excluding large amounts of complex background of non-face, after that define the face candidate regions. Besides, when the image is darkness, we will increase the ...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملFlorian et al_ICMCSSE 2012_3
We here propose improved version of elastic graph matching (EGM) as a face detector, called the multi-scale EGM (MS-EGM). In this improvement, Gabor wavelet-based pyramid reduces computational complexity for the feature representation often used in the conventional EGM, but preserving a critical amount of information about an image. The MS-EGM gives us higher detection performance than Viola-Jo...
متن کاملFacial feature detection using AdaBoost with shape constraints
Recently a fast and efficient face detection method has been devised [11], which relies on the AdaBoost algorithm and a set of Haar Wavelet like features. A natural extension of this approach is to use the same technique to locate individual features within the face region. However, we find that there is insufficient local structure to reliably locate each feature in every image, and thus local...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 9 شماره
صفحات -
تاریخ انتشار 2014